

Big Data Analysis

Al, Data Science, and Big Data Analysis

1112BDA02 MBA, IM, NTPU (M6031) (Spring 2023) Tue 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-03-07

https://meet.google.com/ paj-zhhj-mya

- Week Date Subject/Topics
- 1 2023/02/21 Introduction to Big Data Analysis
- 2 2023/02/28 (Day Off)
- 3 2023/03/07 AI, Data Science, and Big Data Analysis
- 4 2023/03/14 Foundations of Big Data Analysis in Python
- 5 2023/03/21 Case Study on Big Data Analysis I
- 6 2023/03/28 Machine Learning: SAS Viya, Data Preparation and Algorithm Selection

Week Date Subject/Topics

- 7 2023/04/04 (Children's Day) (Day off)
- 8 2023/04/11 Midterm Project Report
- 9 2023/04/18 Machine Learning: Decision Trees and Ensembles of Trees
- 10 2023/04/25 Machine Learning: Neural Networks (NN) and Support Vector Machines (SVM)
- 11 2023/05/02 Case Study on Big Data Analysis II
- **12 2023/05/09 Machine Learning: Model Assessment and Deployment**

- Week Date Subject/Topics
- 13 2023/05/16 ChatGPT and Large Language Models (LLM) for Big Data Analysis
- 14 2023/05/23 Deep Learning for Finance Big Data Analysis
- 15 2023/05/30 Final Project Report I
- 16 2023/06/06 Final Project Report II
- 17 2023/06/13 Self-learning
- 18 2023/06/20 Self-learning

Big Data Analysis

FinTech ABCD

Block Chain

Cloud Computing

Big Data

The Development of Big Data Analytics

Source: Wang, Junliang, Chuqiao Xu, Jie Zhang, and Ray Zhong (2022). "Big data analytics for intelligent manufacturing systems: A review." Journal of Manufacturing Systems 62 (2022): 738-752.

Big Data 4 V

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, GAS

IBM.

Big Data 5 V

Value

Artificial Intelligence Machine Learning & Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

AI, ML, DL

Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

(AI)

Definition of **Artificial Intelligence** (A.I.)

"... the Science and engineering of making intelligent machines" (John McCarthy, 1955)

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

"... technology that thinks and acts like humans"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

"... intelligence exhibited by machines or software"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

4 Approaches of Al

4 Approaches of Al

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
 - Deep Learning (DL)
- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

FinTech

FinBrain: when Finance meets AI 2.0

Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924

a new generation of Al based on the novel information environment of major changes and the development of new goals.

Yunhe Pan (2016), "Heading toward artificial intelligence 2.0." Engineering 2, no. 4, 409-413.

Technology-driven Financial Industry Development

Development stage	Driving technology	Main landscape	Inclusive finance	Relationship between technology and finance
Fintech 1.0 (financial IT)	Computer	Credit card, ATM, and CRMS	Low	Technology as a tool
Fintech 2.0 (Internet finance)	Mobile Internet	Marketplace lending, third-party payment, crowdfunding, and Internet insurance	Medium	Technology- driven change
Fintech 3.0 (financial intelligence)	Al, Big Data, Cloud Computing, Blockchain	Intelligent finance	High	Deep fusion

Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924

AI and Blockchain Key Enabling Technologies of the Metaverse

Source: Gadekallu, Thippa Reddy, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage (2022). "Blockchain for the Metaverse: A Review." arXiv preprint arXiv:2203.09738..

Primary Technical Aspects in the Metaverse

Al with ML algorithms and DL architectures is advancing the user experience in the virtual world

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

Al for the Metaverse in the Application Aspects

healthcare, manufacturing, smart cities, gaming E-commerce, human resources, real estate, and DeFi

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

Data Science

EMC Education Services,

Data Science and Big Data Analytics:

Discovering, Analyzing, Visualizing and Presenting Data,

Wiley, 2015

Data Analyst

- Data analyst is just another term for professionals who were doing BI in the form of data compilation, cleaning, reporting, and perhaps some visualization.
- Their skill sets included Excel, some SQL knowledge, and reporting.
- You would recognize those capabilities as descriptive or reporting analytics.

Data Scientist

- Data scientist is responsible for predictive analysis, statistical analysis, and more advanced analytical tools and algorithms.
- They may have a deeper knowledge of algorithms and may recognize them under various labels—data mining, knowledge discovery, or machine learning.
- Some of these professionals may also need deeper programming knowledge to be able to write code for data cleaning/analysis in current Web-oriented languages such as Java or Python and statistical languages such as R.
- Many analytics professionals also need to build significant expertise in statistical modeling, experimentation, and analysis.

Data Science and Business Intelligence

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

Data Science and Business Intelligence

Predictive Analytics and Data Mining (Data Science)

Future

Past

Predictive Analytics and Data Mining (Data Science)

Structured/unstructured data, many types of sources, very large datasets

Optimization, predictive modeling, forecasting statistical analysis

What if...?

What's the optimal scenario for our business? What will happen next? What if these trends countinue? Why is this happening?

Profile of a Data Scientist

Quantitative

- mathematics or statistics
- Technical
 - software engineering, machine learning, and programming skills
- Skeptical mind-set and critical thinking
- Curious and creative
- Communicative and collaborative

Data Scientist Profile

Big Data Analytics Lifecycle

Key Roles for a Successful Analytics Project

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

Overview of Data Analytics Lifecycle

Overview of Data Analytics Lifecycle

- **1. Discovery**
- 2. Data preparation
- 3. Model planning
- 4. Model building
- 5. Communicate results
- 6. Operationalize

Key Outputs from a Successful Analytics Project

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

Example of Analytics Applications in a Retail Value Chain

Retail Value Chain

Critical needs at every touch point of the Retail Value Chain

Analytics Ecosystem

Job Titles of Analytics

Three Types of Analytics

A Data to Knowledge Continuum

A Simple Taxonomy of Data

Data Preprocessing Steps

An Analytics Approach to Predicting Student Attrition

A Graphical Depiction of the Class Imbalance Problem

Relationship between Statistics and Descriptive Analytics

Understanding the Specifics about Box-and-Whiskers Plots

Big Data Analytics (BDA)

Value Creation by Big Data Analytics

(Grover et al., 2018)

Source: Varun Grover, Roger HL Chiang, Ting-Peng Liang, and Dongsong Zhang (2018), "Creating Strategic Business Value from Big Data Analytics: A Research Framework", Journal of Management Information Systems, 35, no. 2, pp. 388-423.

Architecture of Big Data Analytics

Architecture of Big Data Analytics

Source: Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications

Source: Isaac Kofi Nti, Juanita Ahia Quarcoo, Justice Aning, and Godfred Kusi Fosu (2022). "A mini-review of machine learning in big data analytics: Applications, challenges, and prospects." Big Data Mining and Analytics 5, no. 2 (2022): 81-97.

Framework for BD and BI Research

Source: Ting-Peng Liang and Yu-Hsi Liu (2018), "Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study", Expert Systems with Applications, Volume 111, 30, 2018, pp. 2-10

Big Data Driven Intelligent Manufacturing

Applications of BDA in Manufacturing Systems

Source: Wang, Junliang, Chuqiao Xu, Jie Zhang, and Ray Zhong (2022). "Big data analytics for intelligent manufacturing systems: A review." Journal of Manufacturing Systems 62 (2022): 738-752.

Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications

Source: http://www.amazon.com/gp/product/1466568704

Social Big Data Mining

(Hiroshi Ishikawa, 2015)

Source: http://www.amazon.com/Social-Data-Mining-Hiroshi-Ishikawa/dp/149871093X

Architecture for Social Big Data Mining

(Hiroshi Ishikawa, 2015)

Business Intelligence (BI) Infrastructure

Data Warehouse Data Mining and Business Intelligence

A High-Level Architecture of BI

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017),

Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

The Evolution of BI Capabilities

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Data Mining Is a Blend of Multiple Disciplines

Data Mining at the Intersection of Many Disciplines

Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners,

Jared Dean,

Wiley, 2014.

Source: http://www.amazon.com/Big-Data-Analytics-Turning-Money/dp/1118147596

Source: http://www.amazon.com/Big-Data-Revolution-Transform-Mayer-Schonberger/dp/B00D81X2YE

Source: https://www.thalesgroup.com/en/worldwide/big-data/big-data-big-analytics-visual-analytics-what-does-it-all-mean

Big Data with Hadoop Architecture Logical Architecture Processing: MapReduce

Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Logical Architecture Storage: HDFS

Big Data with Hadoop Architecture Process Flow

Big Data with Hadoop Architecture Hadoop Cluster

Traditional ETL Architecture

Offload ETL with Hadoop (Big Data Architecture)

Spark and Hadoop

Spark Ecosystem

OpenAl ChatGPT

API RESEARCH BLOG ABOUT

ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to <u>InstructGPT</u>, which is trained to follow an instruction in a prompt and provide a detailed response.

Source: https://openai.com/blog/chatgpt/

Conversational AI

to deliver contextual and personal experience to users

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

OpenAl ChatGPT ChatGPT

-;•;-	4	
Examples	Capabilities	Limitations
"Explain quantum computing in simple terms" →	Remembers what user said earlier in the conversation	May occasionally generate incorrect information
"Got any creative ideas for a 10 year old's birthday?" →	Allows user to provide follow- up corrections	May occasionally produce harmful instructions or biased content
"How do I make an HTTP request in Javascript?" →	Trained to decline inappropriate requests	Limited knowledge of world and events after 2021

Free Research Preview: ChatGPT is optimized for dialogue. Our goal is to make AI systems more natural to interact with, and your feedback will help us improve our systems and make them safer.

Source: https://chat.openai.com/chat

>>

OpenAl ChatGPT

What is the future of AI?

5

- It is difficult to predict the exact future of AI, but many experts believe that it will continue d to play an increasingly important role in our lives. Some potential future developments in the field of AI include:
 - Improved natural language processing, allowing AI systems to better understand and respond to human speech and writing.
 - Enhanced ability to learn and adapt, allowing AI systems to become more autonomous and capable of handling a wider range of tasks.
 - Greater integration with the internet of things (IoT), allowing AI systems to control and interact with a wide range of connected devices in the home and workplace.
 - Continued advances in machine learning, allowing AI systems to make more accurate predictions and decisions based on data.
 - Increased use of AI in healthcare, transportation, and other industries, leading to more efficient and effective processes and services.
 - Continued development of ethical and regulatory frameworks to ensure that AI is developed and used responsibly.

Ultimately, the future of AI will depend on how it is developed and used by individuals, organizations, and society as a whole.

Source: https://chat.openai.com/chat

Large Language Models (LLM) (GPT-3, ChatGPT, PaLM, BLOOM, OPT-175B, LLaMA)

The Transformers Timeline

ChatGPT and GPT-3 Family (GPT-3, InstructGPT, GPT-3.5, ChatGPT)

Miscellaneous API

1. cushman:2020-05-03

3. babbage:2020-05-03

2. ada:2020-05-03

4. curie:2020-05-03

6. if-curie-v2

(SFT)

= 62

7. if-davinci-v2

8. if-davinci:3.0.0

9. davinci-if:3.0.0

11.text-ada:001

13.text-curie:001

14.text-davinci:001

12.text-babbage:001

10.davinci-instruct-beta:2.0.0

15.audio-transcribe-deprecated

Total models shown in this viz

5. davinci:2020-05-03

ChatGPT: Optimizing Language Models for Dialogue

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A labeler ranks the outputs from best to worst.

This data is used

to train our

reward model.

0

Explain reinforcement

learning to a 6 year old.

B

Explain rewords.

O

A

In reinforcement

learning, the

agent is...

C

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

Source: https://openai.com/blog/chatgpt/

Training language models to follow instructions with human feedback InstructGPT and GPT 3.5

Step 1

Collect demonstration data, and train a supervised policy.

BBB

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A Explain gravity. C

A labeler ranks the outputs from best to worst.

This data is used to train our

D > C > A = B

D>C>A=B

reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

92

Reinforcement Learning from Human Feedback (RLHF)

- **1. Pretraining a Language Model (LM)**
- 2. Gathering Data and Training a Reward Model
- **3. Fine-tuning the LM with Reinforcement Learning**

Reinforcement Learning from Human Feedback (RLHF)

Step 2. Gathering Data and Training a Reward Model

Sample many prompts Initial Language Model

Prompts Dataset

Reinforcement Learning from Human Feedback (RLHF)

Step 3. Fine-tuning the LM with Reinforcement Learning

Gen Al

Generative AI Models

Source: Gozalo-Brizuela, Roberto, and Eduardo C. Garrido-Merchan (2023). "ChatGPT is not all you need. A State of the Art Review of large Generative AI models." arXiv preprint arXiv:2301.04655 (2023).

BASE10 TREND MAP: GENERATIVE AI

Companies are grouped based on medium produced and segmented by use case within each medium. Companies that offer products across segments are grouped in the segment of the core product offering.

Base¹⁰

DALL·E 2

Create original, realistic images and art from a text description. It can combine concepts, attributes, and styles.

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

riding a horse lounging in a tropical resort in space playing basketball with cats in space

in a photorealistic style in the style of Andy Warhol as a pencil drawing

DALL-E 2

https://openai.com/dall-e-2/

Stable Diffusion

Stable Diffusion Demo

Stable Diffusion is a state of the art text-to-image model that generates images from text. For faster generation and forthcoming API access you can try <u>DreamStudio Beta</u>

https://huggingface.co/spaces/stabilityai/stable-diffusion

Stable Diffusion Colab

woctezuma / stable-diffusion-co	Public Public		O Notifications	중 Fork 7 ☆ Star 31
Code 🛈 Issues 🕅 Pull requests	🕞 Actions 🗄 Projects 🖽 Wiki	③ Security 🗠 Insights		
ິ່ະ" main → ເວັ້າ 1 branch ເ⊙ັ 0 tags	;	Go to file Code	About	ala ta mua Otabla Diffusian
woctezuma README: add a refere	nce for sampler schedules	37bc02d 24 days ago 🕚 18 commi	ts	/CompVis/stable-diffusion
LICENSE	Initial commit	27 days ag	deep-learning	colab image-generation
README.md	README: add a reference for sampler	schedules 24 days ag	go text-to-image	diffusion text2image
stable_diffusion.ipvnb	Allow to choose the scheduler	25 days ad	colaboratory	google-colab
			colab-notebook	google-colaboratory
			google-colab-n	otebook
				ynthesis huggingface
Stable-Diffusion-Colab				Is
				generation latent-diffusion
			stable-diffusion	huggingface-diffusers
The goal of this repository is to provide a Colab notebook to run the text-to-image "Stable Diffusion" model [1].			diffusers st	able-diffusion-diffusers
			M Roadma	
° Usage				
			21 et ere	
• Run stable_diffusion.ipyn	b. COPen in Colab		ਪ 31 stars	
			 2 watching 	

https://github.com/woctezuma/stable-diffusion-colab

Lexica Art: Search Stable Diffusion images and prompts

https://lexica.art/

NLG from a Multilingual, Multimodal and Multi-task perspective

Multi³(Natural Language) Generation

Source: Erdem, Erkut, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii et al.

"Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning." Journal of Artificial Intelligence Research 73 (2022): 1131-1207.

Text-and-Video Dialog Generation Models with Hierarchical Attention

Source: Erdem, Erkut, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii et al.

"Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning." Journal of Artificial Intelligence Research 73 (2022): 1131-1207.

Multimodal Few-Shot Learning with Frozen Language Models

Curated samples with about five seeds required to get past well-known language model failure modes of either repeating text for the prompt or emitting text that does not pertain to the image. These samples demonstrate the ability to generate open-ended outputs that adapt to both images and text, and to make use of facts that it has learned during language-only pre-training.

> Source: Maria Tsimpoukelli, Jacob L. Menick, Serkan Cabi, S. M. Eslami, Oriol Vinyals, and Felix Hill (2021). "Multimodal few-shot learning with frozen language models." Advances in Neural Information Processing Systems 34 (2021): 200-212.
Multimodal Pipeline

that includes three different modalities (Image, Text. Audio)

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

Video and Audio Multimodal Fusion

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022). "A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.

Visual and Textual Representation

Image

Visual representations (Dense)

Text

This is the oldest and most important defensive work to have been built along the North African coastline by the Arab conquerors in the early days of Islam. Founded in 796, this building underwent several modifications during the medieval period. Initially, it formed a quadrilateral and then was composed of four buildings giving onto two inner courtyards.

Textual representations (Sparse)

 -	-	_

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

Hybrid Multimodal Data Fusion

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

Multimodal Transfer Learning

Domain 1 / Modality 1

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

CLIP: Learning Transferable Visual Models From Natural Language Supervision

Source: Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. (2021) "Learning transferable visual models from natural language supervision." In International Conference on Machine Learning, pp. 8748-8763. PMLR.

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

Source: Kim, Wonjae, Bokyung Son, and Ildoo Kim (2021). "Vilt: Vision-and-language transformer without convolution or region supervision." In International Conference on Machine Learning, pp. 5583-5594. PMLR.

wav2vec 2.0:

A framework for self-supervised learning of speech representations

Source: Baevski, Alexei, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.

"wav2vec 2.0: A framework for self-supervised learning of speech representations." Advances in Neural Information Processing Systems 33 (2020): 12449-12460.

Whisper:

Robust Speech Recognition via Large-Scale Weak Supervision

Source: Radford, Alec, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. Tech. Rep., Technical report, OpenAI, 2022.

Microsoft Azure Text to Speech (TTS)

Text SSML

You can replace this text with any text you wish. You can either write in this text box or paste your own text here.

Try different languages and voices. Change the speed and the pitch of the voice. You can even tweak the SSML (Speech Synthesis Markup Language) to control how the different sections of the text sound. Click on SSML above to give it a try!

Enjoy using Text to Speech!

Language

English (United States)

Voice

Jenny (Neural)

Speaking style

General

Speaking speed: 1.00

Pitch: 0.00

Play

Source: <u>https://azure.microsoft.com/en-gb/products/cognitive-services/text-to-speech/</u>

Hugging Face

😣 Hugging Face

Q Search models, datas

Models = Datasets

sets 🛛 🖹 Spaces

📫 Docs 🛛 🚔 Solutions

Pricing ~≡

Log In Sign Up

The AI community building the future.

Build, train and deploy state of the art models powered by the reference open source in machine learning.

BLOOM

BigScience Large Open-science Open-access Multilingual Language Model

BigScience Large Open-science Open-access Multilingual Language Model

Version 1.3 / 6 July 2022

Current Checkpoint: Training Iteration 95000

Total seen tokens: 366B

🦻 Text Generatio	on			
	Groups	~	Examples	\sim
				•

Source: https://huggingface.co/bigscience/bloom

OpenAl Whisper

" Whisper

Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. This demo cuts audio after around 30 secs.

You can skip the queue by using google colab for the space:

Source: https://huggingface.co/spaces/openai/whisper

Tom Lawry (2020), Al in Health:

A Leader's Guide to Winning in the New Age of Intelligent Health Systems,

HIMSS Publishing

Source: Tom Lawry (2020), AI in Health: A Leader's Guide to Winning in the New Age of Intelligent Health Systems, HIMSS Publishing

https://www.amazon.com/Health-HIMSS-Book-Tom-Lawry/dp/0367333716/

Al in Healthcare

Computer Vision in the Metaverse

with scene understanding, object detection, and human action/activity recognition

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

Computer Vision: Image Classification, Object Detection, Object Instance Segmentation

Classification

Classification + Localization Object Detection Instance Segmentation

Source: DHL (2018), Artificial Intelligence in Logistics, http://www.globalhha.com/doclib/data/upload/doc con/5e50c53c5bf67.pdf/

Computer Vision: Object Detection

Source: Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikäinen. "Deep learning for generic object detection: A survey." International journal of computer vision 128, no. 2 (2020): 261-318.

YOLOv7:

Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

Source: Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696 (2022).

Multimodal Fall Detection

IEEE SENSORS JOURNAL, VOL. 21, NO. 17, SEPTEMBER 1, 2021

Performance, Challenges, and Limitations in Multimodal Fall Detection Systems: A Review

Vasileios-Rafail Xefteris[®], Athina Tsanousa, Georgios Meditskos[®], Stefanos Vrochidis[®], and Ioannis Kompatsiaris

Abstract—Fall events among older adults are a serious concern, having an impact on their health and well-being. The development of the Internet of Things (IoT) over the last years has led to the emergence of systems able to track abnormal body movements and falls, thus facilitating fall detection and in some cases prevention. Fusing information from multiple unrelated sources is one of the recent trends in healthcare systems. This work aims to provide a survey of recent methods and trends of multisensor data fusion in fall detection systems and discuss their performance, challenges, and limitations. The paper highlights the benefits of developing multimodal systems for fall detection compared to single-sensor approaches, categorizes the different methods applied to this field, and discusses issues and trends for future work.

Ambient Assisted Living (AAL)

Index Terms—Data fusion, fall detection, multisensor fusion, non-wearable sensors, wearable sensors.

Multimodal Fall Detection

Ambient Assisted Living (AAL)

Sensor	Intrusion	ROI	Accuracy	Power	Computational	Environment
modalities		specific		needs	needs	affected
Wearable	Obtrusive	No	Scenario	High	Low/dependent	No
			dependent			
Ambient	No	Yes	Scenario	Low	Low/dependent	Yes
			dependent			
Camera	Privacy	Yes	High	Low	High	Yes

Challenges of Multimodal Fall Detection

Modalities	Performance	Response time	Power	Unaddressed	Other advantages
combined			consumption	issues	
Wearable	Reasonable accuracy.	Reasonably low time.	Up to 62 days.	Obtrusiveness.	Offer to other healthcare applications, continuous monitoring.
Non-wearable	High accuracy.	Reasonably low response time.	No action needed.	ROI restriction.	No recharge power needs.
Wearable and non-wearable	High accuracy.	Low response time.	No evidence.	Complexity.	Takes advantage of both modalities, no ROI restriction.

Fall Detection Non-Wearable Sensors Fusion

Reference	Year	Sensors	Method	Evaluation	Performance
[46]	2013	PIR and PM	Graph-theoretical concepts to track	Falls and ADLs from 5	Accuracy: 82.86%
		sensors.	user and rule-based algorithm to detect falls.	healthy young subjects.	
[47]	2014	Doppler radar sensor and PIR motion sensors.	SVM classifier on Doppler radar features, rule-based algorithm to correct false alarms using PIR data.	A week of continuous data monitoring of a volunteer.	Reduced false alarms by 63% with 100% detection rate.
[48]	2018	IR sensor and an ultrasonic distance sensor.	Thermal IR and ultrasonic features, SVM classifier.	180 falls and ADLs from 3 healthy young subjects, 6 continuous recordings.	Accuracy: 96.7% (discrete test), 90.3% (continuous test).
[52]	2018	Doppler radar sensor and RGB camera.	Multiple CNN, movement classification from radar, aspect ratio sequence from camera, max voting fusion.	1 type of fall and 3 types of ADLs from 3 subjects.	Accuracy: 99.85%
[53]	2019	Doppler radar and depth camera.	Joints' coordinates from depth camera, feature extraction from joints' coordinates and radar data, Linear Discriminant Classifier.	3 different datasets.	Sensitivity: 100% (FD).

Fall Detection Datasets

Datasets	Posture	Subject			Type sensor	year		
	samples	Number	Height(cm)	Weight(kg)	Age(year)	Gender(M/F)		-
Fall detection ⁴	380	4	159-182	48-85	24-31	3M-1F	RGB camera	2007
Fall detection ⁵	72	2	N/A	N/A	N/A	2M	RGB camera	2008
Multicam Fall ⁶	24	1	N/A	N/A	N/A	М	8 RGB camera	2010
Le2i ⁷	249	10	N/A	N/A	N/A	N/A	RGB camera	2013
Thermal simulated fall [8]	35	10	N/A	N/A	N/A	N/A	Thermal camera	2016
SisFall[9]	154	45	149-183	42-102	19-75	23M-21F	RGB camera, 2 accelerometers, 1 gyroscope	2016
UR Fall Detection[10]	70	5	N/A	N/A	N/A	5M	2 Kinect camera, accelerometer	2016
NTU RGB+D Action Recognition [11]	56880	302	N/A	N/A	N/A	N/A	Kinect camera v2	2016
UMA Fall [12]	531	17	155-195	50-93	18-55	10M-7F	Mobility sensors (smartphone)	2017
CMD Fall [13]	20	50	N/A	N/A	21-40	30M-20F	Kinect camera, accelerometer	2018
TST Fall Detection Dataset V2 ⁸	264	11	N/A	N/A	N/A	N/A	Microsoft Kinect v2, accelerometer	2018
UP-Fall[14]	561	17	N/A	N/A	22-58	N/A	Infrared ,inertial measurement	2019

Note: N/A_Not Available; M_Male; F_Femal

Source: Oumaima, Guendoul, Ait Abdelali Hamd, Tabii Youness, Oulad Haj Thami Rachid, and Bourja Omar.

"Vision-based fall detection and prevention for the elderly people: A review & ongoing research." In 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), pp. 1-6. IEEE, 2021.

Human Action Recognition (HAR)

Human Action Recognition from Various Data Modalities: A Review

Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun Liu

Abstract—Human Action Recognition (HAR) aims to understand human behavior and assign a label to each action. It has a wide range of applications, and therefore has been attracting increasing attention in the field of computer vision. Human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, radar, and WiFi signal, which encode different sources of useful yet distinct information and have various advantages depending on the application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we present a comprehensive survey of recent progress in deep learning methods for HAR based on the type of input data modality. Specifically, we review the current mainstream deep learning methods for single data modalities and multiple data modalities, including the fusion-based and the co-learning-based frameworks. We also present comparative results on several benchmark datasets for HAR, together with insightful observations and inspiring future research directions.

Index Terms—Human Action Recognition, Deep Learning, Data Modality, Single Modality, Multi-modality.

Human Action Recognition (HAR) Modality

	Modality	Example	Pros	Cons
			· Provide rich appearance information	· Sensitive to viewpoint
ity	RGB		· Easy to obtain and operate	· Sensitive to background
Iodal		Hand-waving [27]	· Wide range of applications	· Sensitive to illumination
ual M		das.	 Provide 3D structural information of subject pose 	 Lack of appearance information
Vis	3D Skalaton	l n	· Simple yet informative	· Lack of detailed shape
	Skeleton	L L	· Insensitive to viewpoint	information
		Looking at watch [28]	· Insensitive to background	· Noisy
	Death	R -	 Provide 3D structural information 	· Lack of color and texture information
	Depth Mopping floor [29]		 Provide geometric shape information 	 Limited workable distance
5	Infrared		· Workable in dark	· Lack of color and texture information
	Sequence	Pushing [30]	environments	· Susceptible to sunlight
			Provide 3D information	· Lack of color and texture
	Point Cloud		 Provide geometric shape information 	information
		Bending over [31]	· Insensitive to viewpoint	 High computational complexity
		A	· Avoid much visual	· Asynchronous output
	Event Stream	14 A	• High dynamic range	· Spatio-temporally sparse
		Running [32]	· No motion blur	 Capturing device is relatively expensive

Human Action Recognition (HAR) Modality

Fall Detection

BlazePose:

On-device Real-time Body Pose tracking

BlazePose 33 Keypoint topology

0. Nose 1. Left eye inner 2. Left eye 3. Left eye outer 4. Right eye inner 5. Right eye 6. Right eye outer 7. Left ear 8. Right ear 9. Mouth left 10. Mouth right 11. Left shoulder 12. Right shoulder 13. Left elbow 14. Right elbow 15. Left wrist 16. Right wrist

17. Left pinky #1 knuckle 18. Right pinky #1 knuckle 19. Left index #1 knuckle 20. Right index #1 knuckle 21. Left thumb #2 knuckle 22. Right thumb #2 knuckle 23. Left hip 24. Right hip 25. Left knee 26. Right knee 27. Left ankle 28. Right ankle 29. Left heel 30. Right heel 31. Left foot index 32. Right foot index

SourceBazarevsky, Valentin, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias Grundmann.

"Blazepose: On-device real-time body pose tracking." arXiv preprint arXiv:2006.10204 (2020).

BlazePose results on yoga and fitness poses

SourceBazarevsky, Valentin, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias Grundmann. "Blazepose: On-device real-time body pose tracking." arXiv preprint arXiv:2006.10204 (2020).

OpenPose vs. BlazePose

Source: Alsawadi, Motasem S., El-Sayed M. El-Kenawy, and Miguel Rio. "Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition." Computers, Materials and Continua 74, no. 1 (2022): 19-36.

Papers with Code State-of-the-Art (SOTA)

Computer Vision

Natural Language Processing

https://paperswithcode.com/sota

- AI
- Data Science
- Big Data Analysis

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Varun Grover, Roger HL Chiang, Ting-Peng Liang, and Dongsong Zhang (2018), "Creating Strategic Business Value from Big Data Analytics: A Research Framework", Journal of Management Information Systems, 35, no. 2, pp. 388-423.
- Junliang Wang, Chuqiao Xu, Jie Zhang, and Ray Zhong (2022). "Big data analytics for intelligent manufacturing systems: A review." Journal of Manufacturing Systems 62 (2022): 738-752.
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
- Arun Amaithi Rajan and Vetriselvi V (2023). "Systematic Survey: Secure and Privacy-Preserving Big Data Analytics in Cloud." Journal of Computer Information Systems (2023): 1-21
- Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.
- Gozalo-Brizuela, Roberto, and Eduardo C. Garrido-Merchan (2023). "ChatGPT is not all you need. A State of the Art Review of large Generative AI models." arXiv preprint arXiv:2301.04655 (2023).
- Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. (2022) "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. (2021) "Learning transferable visual models from natural language supervision." In International Conference on Machine Learning, pp. 8748-8763. PMLR.
- Wonjae Kim, Bokyung Son, and Ildoo Kim. (2021) "Vilt: Vision-and-language transformer without convolution or region supervision." In International Conference on Machine Learning, pp. 5583-5594. PMLR.
- Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, and Shi-Min Hu. (2022) "Attention mechanisms in computer vision: A survey." Computational Visual Media ,:1-38.
- Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias Grundmann. (2020) "Blazepose: On-device real-time body pose tracking." arXiv preprint arXiv:2006.10204.
- Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.
- Min-Yuh Day (2023), Python 101, https://tinyurl.com/aintpupython101