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Abstract. Recent studies have outlined the accessibility challenges faced
by blind or visually impaired, and less-literate people, in interacting with
social networks, in-spite of facilitating technologies such as monotone
text-to-speech (T'TS) screen readers and audio narration of visual ele-
ments such as emojis. Emotional speech generation traditionally relies
on human input of the expected emotion together with the text to syn-
thesise, with additional challenges around data simplification (causing
information loss) and duration inaccuracy, leading to lack of expres-
sive emotional rendering. In real-life communications, the duration of
phonemes can vary since the same sentence might be spoken in a variety
of ways depending on the speakers’ emotional states or accents (referred
to as the one-to-many problem of text to speech generation). As a result,
an advanced voice synthesis system is required to account for this un-
predictability. We propose an end-to-end context-aware Text-to-Speech
(TTS) synthesis system that derives the conveyed emotion from text in-
put and synthesises audio that focuses on emotions and speaker features
for natural and expressive speech, integrating advanced natural language
processing (NLP) and speech synthesis techniques for real-time applica-
tions. Our system also showcases competitive inference time performance
when benchmarked against the state-of-the-art TTS models, making it
suitable for real-time accessibility applications.

Keywords: Text-to-Speech - Emotion embeddings - Sentiment detec-
tion.

1 Introduction

Making social networks accessible to vulnerable populations such as the blind
and visually impaired (BVIP), especially in low-income settings, or the less-
literate, relies on innovations such as screen readers with text-to-speech (TTS) [26],
and audio description (AD) of creative media and emojis in text [31J34]. The
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quality of synthetic voices and AD narrative text is more important to this user
group than any other, as they rely on TTS for most of their interactions with
devices [26].

There are efforts to make social networks more accessible for BVIP and less-
literate populations, with interactive voice-based social media platforms [21135]
TTS narrations for emojis [34], and software to add emotional markup tags
into children’s stories to enable story-telling software for BVIP children [23].
Traditional TTS practices suffer from an unnatural, monotone and “robotic"
quality of speech, meaning that the experience of social networks is hampered for
them, since it is the “speaker’s voice that transmits the meaning and the affective
dimension” [31]. Thus, there is a need for emotion-aware TTS for achieving more
accessible social networks.

Data-driven approaches for TTS, such as concatenative synthesis [3] [4] [11]
(stitching natural pre-recorded speech sounds to form new words and phrases [13]),
and unit selection synthesis [2[7](storing multiple instances of each unit with
varying prosodies in an inventory), allow for natural-sounding speech, but are,
however, dependent on access to large speech fragments corpora, generating only
words or phrases already present in the vocabulary and lack the flexibility to ad-
just to different emotions expressed in real-time input text [32]. Additionally,
social media text features abbreviations and linguistic slang, which make auto-
mated emotion-aware TTS for such text more challenging.

The generation of natural-sounding speech is challenging as it necessitates
accurately capturing the nuances of human speech, including pitch, tone, and
rhythm. Recent advances such as Tacotron2 [30] and FastSpeech [29], have led
to the development of speech synthesis systems with appreciable quality that
comparably resemble natural speech [2824]. Existing approaches for emotional
TTS such as one-hot representation of the emotion label [I8] or global style
tokens-based frameworks [37] require manual input of the appropriate emotion
for text, limiting their scalability and generalisability to new scenarios. The lack
of high-quality and emotion-aware audio data, e.g. being free from background
noise, and alignment between emotional tones or styles with the textual con-
text or intention, makes it difficult for machine learning (ML) algorithms to
accurately capture the subtle nuances of emotions in order to generate emotion-
aware audio. Recent advances in transformer-based models, such as Bidirectional
encoder representations for transformers (BERT) [I0] enable combining a trans-
former model for emotion prediction with a speech synthesis model, such as that
in [22], which combines a text classifier with a voice synthesis model.

We extend this line of research to multi-speaker (both male and female) and
multiple emotion scenarios by creating a system for generating natural-sounding
emotional speech. Extending the number of emotions considered as well as the
speaker features brings new challenges for a TTS model as “emotion information
is affected by various paralinguistic characteristics of speech such as pitch, tone
and tempo" [12]. We address these challenges by training two separate mod-
els: one for text analysis and one for voice synthesis. The emotion embeddings
acquired during the text model training are employed during the audio model
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inference to generate emotional speech automatically. The transformer-based
architecture for emotion prediction accurately captures the subtle nuances of
various emotions, while the adaptations we propose to existing voice synthesis
systems (FastSpeech2 [28]) enable the system to work with multiple speakers’
characteristics and multiple emotion voice data. This enables the generation of
emotionally expressive speech congruent with the emotional content of the input
text without manual intervention.

Our model introduces new capabilities that empower users to select both
speaker’s identity and the emotional tone, hence filling gaps in current TTS
systems. For instance, the method presented in [38] uses BERT embedding and
text-predicted prosody control, however, it is still unable to grant users the
control over the voice and emotion. Chandra et al. [5] introduce the language
model-based approach without any labeled data, however users cannot manip-
ulate the voice output characteristics directly. By bringing the option of speech
and emotion to the user, we open the door to personalisation in digital assistive
technologies like screen reader software to make social networks more accessible.

A focus of our investigation lies in handling the emotional aspect of speech.
We introduce an innovative technique of using an Emotion Embedding Trans-
formation, which helps our model understand and recreate subtle emotional
nuances more accurately in synthesised speech. Compared to the state-of-the-
art, our main contributions lie in considering an increased variety of emotions
and ability to discern emotional nuances for a wider range of speaker demo-
graphics, to capture a broader range of emotional experiences, enabling repro-
ducing real-world speech patterns and local languages. Our model is trained on
the GoEmotions [9] database of Reddit comments, thus containing text that
is representative of the linguistic features of social media text. We also en-
sure a balanced representation of speaker samples, with male and female voice
data incorporated to generate synthesised speech for a wide range of applica-
tions. We evaluate our proposed end-to-end system on objective measures of
inference speed and Root Mean Square Error (RMSE). Our developed sys-
tem achieves comparable inference time performance against state-of-the-art
TTS models such as Natural Speech [33], Glow-TTS [14], Grad-TTS [27] and
VITS [I5]. Our work contributes to community efforts with the developed mod-
els made publicly available: https://bit.1ly/4fa81NH and a proof-of-concept
demo: https://bit.1ly/3YgIE6L.

2 Related Work

2.1 Background

Depending on the model architecture, the TTS process involves a few main
components: a text analysis frontend module, an acoustic module, a spectrum
generator and an audio rendering module. The grapheme-to-phoneme (G2P)
conversion transforms a series of characters into a sequence of phonetic symbols,
transforming a character string, such as “author," into its corresponding phonetic
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representation: [AO, TH, ER]. The text analysis module performs text normal-
isation by breaking down the input text into its parts, such as words, phrases,
and punctuation. The acoustic module takes in the G2P conversion and, together
with the spectrum generator, converts this information into a mel spectrogram,
which is a visual representation of an audio signal’s frequency content over time,
with the frequencies converted to the mel scale. The mel scale more accurately
reflects the human perception of pitch differences in audio signals, especially at
lower frequencies. Finally, the audio rendering module, the vocoder, converts the
mel spectrogram into speech.

2.2 Emotional speech synthesis

Traditional concatenative emotion-aware speech synthesisers [3J4I11] work by
concatenating speech fragments stored in databases, based on the input text.
The limitation of these systems is that they are only able to generate words
or phrases already present in the vocabulary, whereas our proposed approach
generalises well on unseen text, meaning that it is more flexible and not bound
by the data it has been trained on.

Deep learning approaches such as WaveNet [25] employ a generative model
composed of a stack of convolutional layers without pooling, maintaining the
same time dimensionality between input and output. It operates directly on raw
audio waveforms, utilising softmax distributions to model the conditional dis-
tributions over individual audio samples. Tacotron [36] uses an attention-based
seq2seq model, with the attention-based decoder enabling content-based align-
ment, while the encoder is built to extract robust sequential text representations.
Its successor, Tacotron 2 [30], consists of a recurrent seq2seq feature prediction
network with attention and a modified WaveNet vocoder, resulting in higher-
quality audio generation and a more accurate text-to-speech system. The non-
autoregressive T'TS model FastSpeech [29], has been identified as one of the most
successful models due to its use of knowledge distillation, and introducing dura-
tion information, to expand the text sequence to match the length of the mel-
spectrogram sequence. However, it suffers from a complicated training process
and information loss in target mel-spectrograms compared to the ground-truth
ones. To address these challenges and better handle the one-to-many mapping
problem of one text input mapped to multiple speech outputs depending on the
emotion context, FastSpeech2 [28] (FS2) was introduced in 2020. Since then, nu-
merous research efforts [6I822] have utilised its model, highlighting the growing
importance of emotional TTS.

Recent research includes EMOVIE [8], which introduces a new dataset of
Mandarin Chinese emotional speech and a simple emotional TTS model based
on FS2 to control the emotion of generated speech, with an emotion predic-
tor (Bi-LSTM classifier model) to encode the emotion label to a latent emotion
embedding, and an emotion controller. In comparison, we employ a transformer-
based emotion classification model, which is better able to capture the context
in the input text. A slightly different approach, using a limited amount of speech
data [39], consists of a seq2seq emotional voice conversion (EVC) framework that
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generates the emotion embeddings from a set of reference utterances to generate
the converted acoustic features. The proposed model is trained to perform both
EVC and emotional TTS; however, EVC is the primary focus. Addressing the
monotonous expression of synthesised speech is the focus of [12], which considers
fine-grained emotion intensity at the phoneme-level by distance-based intensity
quantization, by considering how far the vector is from the centroid of the neu-
tral emotion. Such an approach is dependent upon the audio training dataset
having a substantial word frequency spectrum with a variety of phonemes, in-
cluding for words which have difficult pronunciations. Moreover, this approach
also removes the speaker information from the emotion embedding. Another
method [22] based on the FS2 neural TTS architecture, utilises a BERT-based
text modelling approach to develop a text-aware emotional TTS system with
BERT embeddings to capture the fluctuations in emotional expression within
the text directly. Different from existing research on emotion detection using
a two-stage training system [5], our process employs a faster approach with
RoBERTa for emotion detection, with the non-verbal emotional input enabling
additional quality improvements. The fact that our model can be run in real-time
inference allows its integration in assistive technologies such as screen readers
and AD creative media elements, enabling its application in accesible voice-based
social networks. Additionally, there is currently no known public codebase for
showcasing an English emotional TTS pipeline, a challenge that this paper also
aims to address.

3 Datasets

3.1 EmoV DB Dataset

We use the EmoV-DB [I] database to build models to produce and control
emotional speech. The data was collected from English and French speakers
(only English recordings were used in our work) in anechoic chambers, with the
recordings segmented manually, to ensure high-quality recordings and sufficient
diversity. The audio was recorded by four native English speakers, including two
females and two males. The spoken sentences were sourced from the CMU-arctic
[16] database, and the speakers spoke the utterances in four different emotions:
amusement, anger, sleepiness, and disgust, and a neutral state. The data was
initially recorded at a sample rate of 44.1kHz but was subsequently downsampled
to 16kHz and saved in the 16-bit PCM WAV format.

3.2 GoEmotions Dataset

The GoEmotions database was selected for emotion classification from text.
This database is one of the largest human-annotated datasets, containing 58,000
Reddit comments labelled for 27 emotions categories or ‘neutral’. To use the
emotion embeddings from the text classifier as input to the TTS model’s encoder
during inference, the sentiment embeddings in the classification model must



6 S. De et al.

match the ones in the voice synthesis model. Therefore, only four sentiments
plus neutral were selected from the dataset: “amusement", “anger", “disgust",
“neutral", and “sleepy". As a result, the raw version of the GoEmotions dataset,
made up of over 210,000 sentences, was used instead. However, the resulting
neutral sentiment had over 50,000 sentences, requiring the removal of 60% of
the neutral comments to balance the data.

3.3 Audio pre-processing

In order to generate natural-sounding speech, the audio and text data must be
synchronised. To achieve this, an external speech processing tool, the Montreal
Forced Aligner (MFA) [20], is used, which uses text transcription and audio files
to estimate the alignment between text and sound. A TextGrid file is produced
as an output of this process which consists of words and phonemes. Each word
is then aligned to its corresponding audio segment. It also provides information
about the timing and duration of each phoneme in the audio file. As an illus-
tration, consider the word “author". Based on the EmoV DB dataset, the word
can be broken down into the following phonemes: A01, TH, ER0. The TextGrid
to IntervalTier conversion represents the phonemes by intervals with xmin and
xmax values, spanning from 0 to 1.06 seconds, where 1.06 seconds is a person’s
total time to speak all the phonemes. For instance, the intervals assigned to the
phonemes: A01, TH, ERO are A01: zmin: 0, zmaz: 0.66, TH: xmin: 0.66, xmax:
0.94, and ERO: xmin: 0.94, xmax: 1.06.

4 Emotion-Aware TTS Pipeline

Our end-to-end pipeline, shown in Figure|[l] is based on FastSpeech2, a non-auto
regressive TTS model, and has a number of components: a frontend that nor-
malises the text and also includes a grapheme-to-phoneme model, the acoustic
model, consisting of the encoder, variance adaptor and mel decoder. We employ
HiFi-GAN [I7], a Generative Adversarial Network (GAN) for efficient and high
fidelity speech synthesis, to generate the waveforms. The acoustic model includes
speaker and emotion embeddings to handle multi-speaker and multi-emotion sce-
narios. The speaker embeddings are added to the output of the encoder, allowing
the model to learn speaker-specific information. Similarly, the emotion embed-
dings are processed through an emotion linear layer and added to the encoder
output, allowing the model to capture emotion-related information from the in-
put text. To provide additional context for generating emotion-aware speech,
emotion embeddings are incorporated into the model during training. This is
achieved by adding a lookup table that stores the emotion-embeddings of a fixed
dictionary and size.

4.1 RoBERTa Emotion Classification Model

Our approach utilises the RoOBERTa [19] model to generate the representation of
the input sentences, which is used for emotion classification. We chose RoBERTa
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Fig. 1: Emotion-Aware TTS Pipeline

for our model as it displayed better accuracy, and more stable and consistent
F1-score and loss curves for a range of learning rates and batch sizes, compared
to the BERT model. A smoother F1 score and loss curve indicate a more stable
learning process, suggesting that the model is less likely to overfit or underfit
the training data. Our dataset is pre-processed using a tokenisation function,
which formats the input sentences into a uniform format. Padding and trun-
cation ensure a consistent sequence length of 128 tokens. We then feed this
pre-processed data into RoBERTa, modified explicitly for sequence classifica-
tion tasks. The model is designed with five output labels, each corresponding
to our chosen emotion categories: “amusement"”, “anger", “disgust", “neutral",
and “sleepy". In this model, the final hidden states of a special token, known as
[CLS], represent the entire text input. This representation, known as RoBERTa
embedding, encodes key information for emotion classification. To prevent over-
fitting, the model’s architecture comprises attention mechanisms and dropout
layers. It also features layer normalisation and dense layers, which aid in captur-
ing complex patterns within the dataset. Finally, the classification head of the
RoBERTa model utilises a softmax function to generate probabilities for each
emotion category that helps translate the high-dimensional learned features into
final predictions, providing a distribution over our chosen emotion categories.

4.2 Neural Emotion-aware TTS

Pre-processing steps for TTS systems include text normalisation and grapheme-
to-phoneme conversion. For this, we standardise the input text in a form that the
TTS model can effectively understand by using various methods such as ASCII
transliteration, lowercase conversion, abbreviation expansion, number expansion,
and whitespace collapse. Abbreviations such as ‘Dr.” are expanded to ‘doctor’
and ‘St.” to ‘saint’, using a predefined list of standard abbreviations and their
corresponding expansions. Numbers are processed to replace numerals with their
written form, e.g. ‘2’ becomes ‘two’. Once properly normalised, the text is con-
verted from graphemes (written characters) to phonemes (sound units) (G2P),



8 S. De et al.

by using an off-the-shelf module for G2P conversion of English text. This trans-
formation is necessary for accurate speech synthesis since the pronunciation of
a word does not always directly align with its spelling. To prepare the audio
data, the Montreal Forced Aligner (MFA) tool was used to generate the re-
quired TextGrid files containing essential phonemes and durations necessary for
predicting the voice’s duration, pitch and energy.

Phoneme Embedding At this stage, information from the audio file name,
TextGrid files, and .lab files is concatenated together and saved to a text file and
separated by a pipe, as follows: “neutral 281-308 0287|beal{K IY1 P AHO N
AY1 AA1 N HH IH1 M}|Keep an eye on him.|neutral". The different field types
are as follows:

File ID: ‘neutral 281-308 0287’

Speaker ID: ‘bea’

— Phoneme sequence: ‘{K IY1 P AHO N AY1 AA1 N HH IH1 M}’
— Text: ‘Keep an eye on him.’

— Emotion: ‘neutral’

This data is fed into the model: the first element, “neutral 281-308 0287" serves
as an identifier, while the name element, bea, is utilised for speaker embeddings.
The phoneme sequence, K IY1 P AHO N AY1 AA1 N HH IH1 M, is processed by
the encoder and then passed to the variance adaptor to predict duration, pitch,
and energy. Lastly, the emotion information is employed as input to the emotion
embedding table, enhancing the model’s ability to capture emotional nuances.

Encoder The Encoder is made up of a combination of transformer and con-
volution components. It is primarily based on transformer design but also uses
Fast Fourier Transform (FFT) blocks, which include a multi-head self-attention
mechanism followed by a position-wise feed-forward network with gated convolu-
tion. The phoneme sequence is first tokenised and numerically represented. This
sequence is then fed into the Encoder, which generates the hidden sequence.
To process the emotion embeddings before integrating them into the model, a
sequential linear layer followed by a ReLU activation function is applied. This
change allows the model to create a speech that better fits the context and con-
veys emotions effectively. The processed emotion embeddings are incorporated
into the Encoder’s output, which is then passed through the variance adaptor.
For an input sequence of phonemes, P = {p1,p2,...,pn}, where n is the num-
ber of phonemes, we map each phoneme to its corresponding embedding using
an embedding matrix E € R(4*V) where d is the dimension of the embedding
space and V is the vocabulary size (number of unique phonemes). The resulting
phoneme embedding sequence is X = {x1,za,...,2,}, with z; = E - p;.

In this example, the input sequence of phonemes P is represented as a se-
quence of 3-dimensional embeddings X, which can be further processed by the
model. The encoder processes the phoneme embedding sequence X using a stack
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of self-attention layers and 1D-convolution layers. The output of the encoder,
which is the phoneme hidden sequence H, can be represented as:

H = Encoder(X) (1)

The variance adaptor adds duration, pitch, and energy information to the
phoneme hidden sequence H. We denote the log duration predictions as D =
{dy,da,...,d,}, the pitch predictions as P = {p1,pa,...,pn}, and the energy
predictions as F = {ej,es,...,e,}. The variance adaptor then expands the
phoneme hidden sequence based on the predicted durations and adds the pitch
and energy embeddings to create an adapted hidden sequence H':

H' = Variance_Adaptor(H, D, P, F) (2)

These predictions are obtained from their respective predictors:

D = Duration_ Predictor(H) (3)
P = Pitch_Predictor(H) (4)
E = Energy Predictor(H) (5)

Mel-spectrogram Decoder The mel-spectrogram decoder takes the adapted
hidden sequence H’ and converts it into a mel-spectrogram sequence M =
{mi,ma,...,m;}, where t is the number of time frames in the mel-spectrogram.
The decoder uses a stack of self-attention layers and 1D-convolution layers (top

half of Figure :
M = MelSpectrogram Decoder(H") (6)

During inference, HiFi-GAN|IT] is used to convert mel-spectrograms into raw
audio waveforms. The input mel-spectrogram is passed through a 1D convolu-
tional layer for feature extraction and to adjust the number of channels. The
features are then upsampled by a specific factor, gradually increasing the size
of the feature map until the target audio length is reached. The upsampled fea-
ture map is then passed through a series of residual blocks. Each residual block
contains two convolutional layers with different kernel sizes and dilations. The
processed feature map goes through another 1D convolutional layer to generate
the final raw audio waveform, which is then saved into an audio file (Figure
bottom).

Emotion Embedding During training, instead of using the predicted label
of the text emotion classification model, the audio emotion label is captured
from the audio file’s name and is used as a conditional input to the emotional
embedding table. During training:

— A emotion variable is crated as a NumPy array with a single element,
args.emotion_id, with a possible value from 0 to 4.
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Fig. 2: Mel-spectrogram Sequence to Audio

— If the multi_emotion flag in the model configuration is set to True, the code
reads the emotions. json file, which contains the mapping of emotions names
to their corresponding IDs: {"amused": 0, "anger": 1, "disgust": 2,
"neutral": 3, "sleepiness": 4} and calculates the number of unique
emotions (n_emotion) present in the dataset.

— An embedding layer self.emotion_emb is created with size = number of
unique emotions n_emotion and dimension = encoder hidden size. This layer
converts the emotions IDs into continuous vectors, for the model to process.

— The self.emotion_linear layer consists of a linear transformation, fully
connected layer, followed by ReLU activation function. This layer maps
the emotion embedding vector to a new representation with the same size
and dimension as the encoder hidden size model_config ["transformer"]
["encoder_hidden"].

During inference, the previously learned embedding table is used to map the
predicted text emotion to a fixed size emotion embedding generated by the pre-
trained RoBERTa-base model.

Details of Training Parameters The transformer model configuration in-
cludes an encoder and a decoder, each with specified layers and hidden units.
The encoder comprises 4 layers, each with 2 heads and 256 hidden units. The
decoder configuration includes 6 layers, each with 2 heads and 256 hidden units.
The model is designed to handle multi-emotion inputs with a multi-speaker set-
ting. The variance predictor model uses filters of size 256 with a kernel size of
3, and a dropout rate of 0.5 for regularization. The HiFi-GAN vocoder with a
“universal" speaker setting is employed. The optimizer is configured with a batch
size of 16, and parameters for the Adam optimizer include beta-s set to 0.9 and
0.98, an epsilon of 1e-9, and a weight decay of 0.0. Gradient clipping is set at 1.0
with an accumulation step of 1. For learning rate scheduling, a warm-up step of
4000 is used, and the annealing steps are set at 300K, 400K, and 500K with an
anneal rate of 0.3.

Model Optimisation The FastSpeech2 loss function is used to measure the dif-
ferences between the model’s predicted output and actual target values (ground
truth). Adam optimiser is used to adjust the parameters and minimise the
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loss during training. The loss function consists of multiple loss components:
Mel-spectrogram loss, Postnet Mel-spectrogram loss, pitch loss, energy loss and
durration loss. The Total loss is the sum of these individual losses. The mel-
spectrogram and post mel-spectrogram losses utilise L1Loss to compute the
Mean Absolute Error (MAE) between predicted and ground truth values:

N
1
L1Loss = N z_; |ypredi — Ytrue; (7)

Pitch, energy and duration losses are computed with the help of Mean Square
Error loss (MSE) which calculates the error between the predicted and ground
truth values:

N
1
MSELoss = N ;(ypredi - ytruei)2 (8)

The total loss is a sum of the individual loss components:

Ltotal = Lmel + Lpostnetimel + Lpitch + Lenergy + Lduration (9)

4.3 TTS Pipeline Deployment

We have deployed the developed speech synthesis model on the HuggingFace
platform to allow users to generate synthetic speech samples through an inter-
active web interface, enabling users to generate emotion-aware speech samples
by specifying various parameters, including input text, speaker ID, embedding
type, and desired emotion, for the model to generate a corresponding audio file.
Users can also interact with the model via an API through HTTP requests.
It is important to note that the inference time may be slower than the results
presented in this paper as the model operates on a CPU compared to the GPU
used for testing.

5 Evaluation

The evaluation of the TTS system focuses on inference speed and Root Mean
Square Error (RMSE). The inference speed is calculated for each speaker and
compared. Also, the time required to generate one second of synthesised speech is
benchmarked against other TTS models that utilise a similar HiFi-GAN vocoder.
Since the EmoV DB dataset lacks ground truth mel spectrograms, it is not fea-
sible to use Mel Cepstral Distortion (MCD) to measure the differences between
the ground truth and generated spectrograms. Instead, RMSE compares the ac-
tual wave files against the generated ones. Lower error values indicate higher
quality in the generated samples.

5.1 Inference Speed Performance of Synthesised Speech

Table[I]shows the time taken to synthesize one text sample with manually added
emotion embeddings compared to embeddings generated by the text classifier,
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using different speakers and emotions. Additionally, the table displays the num-
ber of words in each text sequence. Considering the additional text processing,
the results indicate that there is no drawback in using the generated embed-
dings during speech synthesis. In fact, a slight decrease in inference time can be
observed in some instances.

Method  Speaker Gender Emotion Sample ID Time (s) Words

RoBERTa Bea female amused 0173 0.52 7
Manual Bea female amused 0173 0.55 7

Table 1: Inference time comparison between manually selected emotions and
generated ones. GPU Tesla T4 16GB RAM

Table [2 presents the time required to generate sound waves for two sentences
with different emotions and speakers. Although speaker number three, Josh,
lacks “anger" and “disgust" emotion samples in the dataset, the model could
represent and synthesise these emotions for the speaker. However, there are
no ground truth samples available for comparison results. Therefore only the
sentiments “amused" and ‘“neutral" are chosen for this test as these are the only
ones present for all the speakers.

Speaker Gender Emotion Sample ID Time (s) Words

Bea female amused 0173 0.55 7
Bea female neutral 0173 0.54 7
Jenie female amused 0140 0.56 8
Jenie  female neutral 0173 0.73 7
Josh male amused 0173 0.48 7
Josh male neutral 0173 0.46 7
Sam male amused 0173 0.58 7
Sam male neutral 0173 0.47 7

Table 2: Inference time comparison for all speakers. GPU Tesla T4 16GB RAM

The results in Table [2] show that the inference time is relatively consis-
tent across different speakers and their emotional states. For example, the fe-
male speaker Bea has only minor differences in inference times when expressing
“amusement” or a “neutral" emotion. This pattern is also observed for the other
speakers, including Jenie, Josh, and Sam, whose inference times vary slightly
across different emotional states. These results indicate that the TTS system is
stable in generating speech for various speakers and emotions without significant
differences in the synthesis of speech with different emotions. Table [3| compares
the inference speeds of the Emotion-Aware TTS with those of previous TTS sys-
tems, as presented in NaturalSpeech [33], as well as considering NaturalSpeech
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as an additional baseline. These results were measured using an NVIDIA V100
GPU. For a fairer comparison, our system was tested on an NVIDIA A100 GPU,
since we did not have access to a V100 GPU. It is also important to note that
the presented systems lack the capability to select different speakers or emotions,
which adds to the model complexity (and hence, inference time) in our case.

System Vocoder RTF GPU
NaturalSpeech  HiFi-GAN 0.013 V100
Glow-TTS HiFi-GAN 0.021 V100
Grad-TTS(100) HiFi-GAN 4.120 V100
VITS HiFi-GAN 0.014 V100

Emotional TTS HiFi-GAN 0.080 A100

Table 3: Inference speed comparison of RTF (real-time factor, time to synthesize
1 second waveform) for the neutral sentiment, compared to NaturalSpeech [33]

Considering the complexity of the Emotion-Aware TTS model, which includes
a text classification model during inference, the 0.080-second inference time for
each second of a synthesised waveform is quite reasonable. It is not far from
the other systems presented, which directly generate the waveform from text,
suggesting that it could be potentially utilised in real-time systems.

5.2 RMSE Analysis of Synthesised Speech

Table [ compares the RMSE of synthesised and natural speech waveforms.

Speaker Gender Emotion Sample RMSE

Bea female amused 0173  0.1803
Bea female neutral 0173  0.1683
Jenie  female amused 0173 0.0724
Jenie  female neutral 0140 0.1662
Josh male amused 0173 0.1576
Josh male neutral 0173 0.1769
Sam male amused 0173  0.1290
Sam male neutral 0173 0.1694

Table 4: Synthesised and natural speech waveforms comparison: RMSE

The RMSE values presented in Table [ fall within an acceptable range, con-
sidering the dataset and the quality of the recordings. This error is better visu-
alized in Figures [3al and To generate these images, some samples had to be
padded due to differences in wavelengths; seen as a continuous line at the end of
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the synthesised or natural waveforms. All samples generated for these findings
were produced with a 22,050 Hz sampling rate, the recommended sampling rate
for TTS, as higher sampling rates make the data too voluminous for a neural
network.

. Synthesized waveform . Synthesized waveform

. Natural'{;qaveforrn . Naturalr\‘nm;aveform

 HPproe : . o A—rvo.-o»&»-'—*»mrf
Time Time

. Difference waveform . Difference waveform
Time ) : Time.

(a) Josh 0173 ‘neutral’ (b) Sam 0173 ‘amused’
Fig.3: RMSE

Figures [3a] and D] demonstrate that the model synthesizes the “neutral" sen-
timent more accurately than the “amused" sentiment, which is valid for all speak-
ers. Further analysis of the RMSE images for different emotions and speakers
(Figure shows continuous lines in the natural waveform sample that indi-
cate a pause at the beginning and also in-between words. After listening to the
original audio file, it was confirmed that pauses were present at the start of
the sample as well as between words. Further examination of other sentiment
audio instances, such as “sleepy" and “anger," revealed pauses between words
and other expressions not present in the text transcripts. For example, “ha ha
ha" was observed in the “amused" samples, while “yawning" was noted in the
“sleepy" examples. This is an important finding that could affect the model’s
overall performance.

6 Conclusion

In this paper, we introduce Emotion-Aware TTS, an approach to synthesise
good-quality neutral and emotion-aware audio waveforms. The developed system
demonstrates the potential for automatically generating emotion-aware speech
audio by leveraging a text classifier, thus eliminating the need for manual inter-
vention. By working seamlessly with the RoOBERTa text classifier, the model can
generalise effectively and synthesise audio waveforms from unseen text samples.
Furthermore, the model showcases the capacity for selecting different speakers
and emotions, which adds to its versatility, while still keeping competitive in-
ference times, showing its potential for integration in assistive technologies for
achieving accessible social platforms. Future directions of work include improving
audio data quality and range, refining the accuracy of text classifiers, optimis-
ing the speech-generating methodology, and expanding the system’s ability to
express a wider range of emotions.
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